Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610954

RESUMO

Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.

2.
Viruses ; 15(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896906

RESUMO

The XVIII International Parvovirus Workshop took place in Rimini, Italy, from 14 to 17 June 2022 as an on-site event, continuing the series of meetings started in 1985 and continuously held every two years. The communications dealt with all aspects of research in the field, from evolution and structure to receptors, from replication to trafficking, from virus-host interactions to clinical and veterinarian virology, including translational issues related to viral vectors, gene therapy and oncolytic parvoviruses. The oral communications were complemented by a poster exhibition available for view and discussion during the whole meeting. The XVIII International Parvovirus Workshop was dedicated to the memory of our dearest colleague Mavis Agbandje-McKenna (1963-2021).


Assuntos
Infecções por Parvoviridae , Parvovirus , Humanos , Parvovirus/genética , Vetores Genéticos , Itália
3.
Viruses ; 15(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680246

RESUMO

Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Águas Residuárias , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Teste para COVID-19
4.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632759

RESUMO

Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.


Assuntos
Galectina 1 , Glioblastoma , Parvovirus H-1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Linhagem Celular Tumoral , Galectina 1/genética , Galectina 1/metabolismo , Glioblastoma/terapia , Parvovirus H-1/fisiologia , Humanos , Recidiva Local de Neoplasia , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas , Neoplasias Pancreáticas
5.
J Clin Virol ; 152: 105191, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640400

RESUMO

OBJECTIVES: The aim of this study was to develop a RT-PCR assay for the specific detection of the SARS-CoV-2 Omicron Variant of Concern (VOC) as a rapid alternative to sequencing. METHODS: A RT-PCR was designed in silico and then validated using characterised clinical samples containing Omicron (both BA.1 and BA.2 lineages) and the Omicron synthetic RNA genome. As negative controls, SARS-CoV-2 positive clinical samples collected in May 2020, and synthetic RNA genomes of the isolate Wuhan Hu-1 and of the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Iota (B.1.526), Epsilon (B.1.429) and Delta (B.1.617.2) SARS-CoV-2 VOC were used. RESULTS: Experiments performed using as templates the synthetic RNA genomes demonstrate the high specificity of the PCR-method for the SARS-CoV-2 Omicron. Despite the synthetic RNAs were used at high copy numbers, specific signal was mainly detected with the Omicron synthetic genome. Only a non-specific late signal was detected using the Alpha variant genome, but these results were considered negligible as Alpha VOC has been replaced by the Delta and it is not circulating anymore in the world. Using our method, we confirmed the presence of Omicron on clinical samples containing this variant but not of other SARS-CoV-2 lineages. The method is highly sensitive and can detect up to 1 cp of the Omicron virus per µl. CONCLUSIONS: The method presented here, in combination with other methods in use for detection of SARS-CoV-2, can be used for an early identification of Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452286

RESUMO

Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review-as part of the special edition on "State-of-the-Art Viral Vector Gene Therapy in Germany"-the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Ensaios Clínicos como Assunto , Engenharia Genética , Alemanha , Humanos , Vírus Oncolíticos/genética
7.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359574

RESUMO

Oncolytic viruses (OVs) were originally developed as direct cytotoxic agents but have been increasingly recognised as a form of immunotherapy [...].

8.
Nat Commun ; 12(1): 3834, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158478

RESUMO

H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.


Assuntos
Parvovirus H-1/metabolismo , Laminina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Vírus Oncolíticos/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioblastoma/terapia , Glioblastoma/virologia , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Laminina/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia Viral Oncolítica/métodos , Ligação Proteica , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477757

RESUMO

Resistance to anticancer treatments poses continuing challenges to oncology researchers and clinicians. The underlying mechanisms are complex and multifactorial. However, the immunologically "cold" tumor microenvironment (TME) has recently emerged as one of the critical players in cancer progression and therapeutic resistance. Therefore, TME modulation through induction of an immunological switch towards inflammation ("warming up") is among the leading approaches in modern oncology. Oncolytic viruses (OVs) are seen today not merely as tumor cell-killing (oncolytic) agents, but also as cancer therapeutics with multimodal antitumor action. Due to their intrinsic or engineered capacity for overcoming immune escape mechanisms, warming up the TME and promoting antitumor immune responses, OVs hold the potential for creating a proinflammatory background, which may in turn facilitate the action of other (immunomodulating) drugs. The latter provides the basis for the development of OV-based immunostimulatory anticancer combinations. This review deals with the smallest among all OVs, the H-1 parvovirus (H-1PV), and focuses on H-1PV-based combinatorial approaches, whose efficiency has been proven in preclinical and/or clinical settings. Special focus is given to cancer types with the most devastating impact on life expectancy that urgently call for novel therapies.

10.
Viruses ; 12(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096814

RESUMO

H-1 protoparvovirus (H-1PV) is a self-propagating virus that is non-pathogenic in humans and has oncolytic and oncosuppressive activities. H-1PV is the first member of the Parvoviridae family to undergo clinical testing as an anticancer agent. Results from clinical trials in patients with glioblastoma or pancreatic carcinoma show that virus treatment is safe, well-tolerated and associated with first signs of efficacy. Characterisation of the H-1PV life cycle may help to improve its efficacy and clinical outcome. In this study, we investigated the entry route of H-1PV in cervical carcinoma HeLa and glioma NCH125 cell lines. Using electron and confocal microscopy, we detected H-1PV particles within clathrin-coated pits and vesicles, providing evidence that the virus uses clathrin-mediated endocytosis for cell entry. In agreement with these results, we found that blocking clathrin-mediated endocytosis using specific inhibitors or small interfering RNA-mediated knockdown of its key regulator, AP2M1, markedly reduced H-1PV entry. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. We also show that H-1PV entry is dependent on dynamin, while viral trafficking occurs from early to late endosomes, with acidic pH necessary for a productive infection. This is the first study that characterises the cell entry pathways of oncolytic H-1PV.


Assuntos
Clatrina/fisiologia , Endocitose , Parvovirus H-1 , Neoplasias/terapia , Terapia Viral Oncolítica , Cavéolas/fisiologia , Linhagem Celular Tumoral , Dinaminas/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Internalização do Vírus
11.
Neurooncol Adv ; 2(1): vdaa013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642680

RESUMO

Suicide gene therapy has represented an experimental cancer treatment modality for nearly 40 years. Among the various cancers experimentally treated by suicide gene therapy, high-grade gliomas have been the most prominent both in preclinical and clinical settings. Failure of a number of promising suicide gene therapy strategies in the clinic pointed toward a bleak future of this approach for the treatment of high-grade gliomas. Nevertheless, the development of new vectors and suicide genes, better prodrugs, more efficient delivery systems, and new combinatorial strategies represent active research areas that may eventually lead to better efficacy of suicide gene therapy. These trends are evident by the current increasing focus on suicide gene therapy for high-grade glioma treatment both in the laboratory and in the clinic. In this review, we give an overview of different suicide gene therapy approaches for glioma treatment and discuss clinical trials, delivery issues, and immune responses.

12.
Annu Rev Virol ; 7(1): 537-557, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600158

RESUMO

Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/patogenicidade , Infecções por Parvoviridae/virologia , Parvovirus/patogenicidade , Tropismo Viral , Animais , Ensaios Clínicos como Assunto , Humanos , Terapia Viral Oncolítica/normas , Roedores/virologia
13.
Front Immunol ; 10: 1848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440242

RESUMO

Cancer cells utilize multiple mechanisms to evade and suppress anticancer immune responses creating a "cold" immunosuppressive tumor microenvironment. Oncolytic virotherapy is emerging as a promising approach to revert tumor immunosuppression and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death and thereby eliciting robust anticancer immune responses. In this review, we summarize information about OV-mediated immune conversion of the tumor microenvironment. As a case study we focus on the rodent protoparvovirus H-1PV and its dual role as an oncolytic and immune modulatory agent. Potential strategies to improve H-1PV anticancer efficacy are also discussed.


Assuntos
Parvovirus H-1/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Microambiente Tumoral/imunologia , Humanos
14.
Viruses ; 11(6)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216641

RESUMO

The rat protoparvovirus H-1PV is nonpathogenic in humans, replicates preferentially in cancer cells, and has natural oncolytic and oncosuppressive activities. The virus is able to kill cancer cells by activating several cell death pathways. H-1PV-mediated cancer cell death is often immunogenic and triggers anticancer immune responses. The safety and tolerability of H-1PV treatment has been demonstrated in early clinical studies in glioma and pancreatic carcinoma patients. Virus treatment was associated with surrogate signs of efficacy including immune conversion of tumor microenvironment, effective virus distribution into the tumor bed even after systemic administration, and improved patient overall survival compared with historical control. However, monotherapeutic use of the virus was unable to eradicate tumors. Thus, further studies are needed to improve H-1PV's anticancer profile. In this review, we describe H-1PV's anticancer properties and discuss recent efforts to improve the efficacy of H-1PV and, thereby, the clinical outcome of H-1PV-based therapies.


Assuntos
Parvovirus H-1/crescimento & desenvolvimento , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/crescimento & desenvolvimento , Animais , Terapia Combinada/métodos , Humanos , Ratos , Resultado do Tratamento
15.
Hum Gene Ther ; 28(10): 800-819, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28870120

RESUMO

Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.


Assuntos
Vetores Genéticos , Terapia Viral Oncolítica , Vírus Oncolíticos , Pesquisa , Animais , Ensaios Clínicos como Assunto , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos , Terapia Genética/métodos , Vetores Genéticos/genética , Alemanha , Humanos , Modelos Animais , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Resultado do Tratamento
16.
Endocr Rev ; 37(4): 417-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355317

RESUMO

SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.


Assuntos
Transtornos do Crescimento/genética , Transtornos dos Cromossomos Sexuais/genética , Proteína de Homoeobox de Baixa Estatura/deficiência , Animais , Transtornos do Crescimento/terapia , Humanos , Transtornos dos Cromossomos Sexuais/terapia
17.
Viruses ; 8(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26751469

RESUMO

Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a "double-edged sword" for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/genética
18.
Virol J ; 12: 6, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25630937

RESUMO

Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Parvovirus/fisiologia , Animais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos
19.
PLoS One ; 9(6): e98543, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887312

RESUMO

Deficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders characterized by reduced height and skeletal anomalies such as Turner syndrome, Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia as well as isolated short stature. SHOX acts as a transcription factor during limb development and is expressed in chondrocytes of the growth plates. Although highly conserved in vertebrates, rodents lack a SHOX orthologue. This offers the unique opportunity to analyze the effects of human SHOX expression in transgenic mice. We have generated a mouse expressing the human SHOXa cDNA under the control of a murine Col2a1 promoter and enhancer (Tg(Col2a1-SHOX)). SHOX and marker gene expression as well as skeletal phenotypes were characterized in two transgenic lines. No significant skeletal anomalies were found in transgenic compared to wildtype mice. Quantitative and in situ hybridization analyses revealed that Tg(Col2a1-SHOX), however, affected extracellular matrix gene expression during early limb development, suggesting a role for SHOX in growth plate assembly and extracellular matrix composition during long bone development. For instance, we could show that the connective tissue growth factor gene Ctgf, a gene involved in chondrogenic and angiogenic differentiation, is transcriptionally regulated by SHOX in transgenic mice. This finding was confirmed in human NHDF and U2OS cells and chicken micromass culture, demonstrating the value of the SHOX-transgenic mouse for the characterization of SHOX-dependent genes and pathways in early limb development.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Animais , DNA Complementar , Ensaio de Desvio de Mobilidade Eletroforética , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real
20.
Hum Mol Genet ; 23(6): 1619-30, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24186869

RESUMO

The SHOX gene encodes for a transcription factor important for normal bone development. Mutations in the gene are associated with idiopathic short stature and are responsible for the growth failure and skeletal defects found in the majority of patients with Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia. SHOX is expressed in growth plate chondrocytes where it is supposed to modulate the proliferation, differentiation and cell death of these cells. Supporting this hypothesis, in vitro studies have shown that SHOX expression induces cell cycle arrest and apoptosis in both transformed and primary cells. In this study, we further characterized the cell death mechanisms triggered by SHOX and compared them with the effects induced by one clinically relevant mutant form of SHOX, detected in LWD patients (SHOX R153L) and a SHOX C-terminally truncated version (L185X). We show that SHOX expression in U2OS osteosarcoma cells leads to oxidative stress that, in turn, induces lysosomal membrane rupture with release of active cathepsin B to the cytosol and subsequent activation of the intrinsic apoptotic pathway characterized by mitochondrial membrane permeabilization and caspase activation. Importantly, cells expressing SHOX R153L or L185X did not display any of these features. Given the fact that many of the events observed in SHOX-expressing cells also characterize the complex cell death process occurring in the growth plate during endochondral ossification, our findings further support the hypothesis that SHOX may play a central role in the regulation of the cell death pathways activated during long bone development.


Assuntos
Transtornos do Crescimento/genética , Proteínas de Homeodomínio/metabolismo , Lisossomos/genética , Osteocondrodisplasias/genética , Osteossarcoma/genética , Estresse Oxidativo , Apoptose , Caspases/metabolismo , Catepsina B/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transtornos do Crescimento/patologia , Lâmina de Crescimento/metabolismo , Humanos , Lisossomos/metabolismo , Mutação , Osteocondrodisplasias/patologia , Osteossarcoma/metabolismo , Proteína de Homoeobox de Baixa Estatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...